public class Topology
extends java.lang.Object
ProcessorTopology.
 A topology is an acyclic graph of sources, processors, and sinks.
 A source is a node in the graph that consumes one or more Kafka topics and forwards them to its
 successor nodes.
 A processor is a node in the graph that receives input records from upstream nodes, processes the
 records, and optionally forwarding new records to one or all of its downstream nodes.
 Finally, a sink is a node in the graph that receives records from upstream nodes and writes them to
 a Kafka topic.
 A Topology allows you to construct an acyclic graph of these nodes, and then passed into a new
 KafkaStreams instance that will then begin consuming, processing, and producing
 records.| Modifier and Type | Class and Description | 
|---|---|
static class  | 
Topology.AutoOffsetReset
Sets the  
auto.offset.reset configuration when
 adding a source processor or when creating KStream
 or KTable via StreamsBuilder. | 
| Constructor and Description | 
|---|
Topology()  | 
| Modifier and Type | Method and Description | 
|---|---|
Topology | 
addGlobalStore(StoreBuilder storeBuilder,
              java.lang.String sourceName,
              Deserializer keyDeserializer,
              Deserializer valueDeserializer,
              java.lang.String topic,
              java.lang.String processorName,
              ProcessorSupplier stateUpdateSupplier)
Adds a global  
StateStore to the topology. | 
Topology | 
addGlobalStore(StoreBuilder storeBuilder,
              java.lang.String sourceName,
              TimestampExtractor timestampExtractor,
              Deserializer keyDeserializer,
              Deserializer valueDeserializer,
              java.lang.String topic,
              java.lang.String processorName,
              ProcessorSupplier stateUpdateSupplier)
Adds a global  
StateStore to the topology. | 
Topology | 
addProcessor(java.lang.String name,
            ProcessorSupplier supplier,
            java.lang.String... parentNames)
Add a new processor node that receives and processes records output by one or more parent source or processor
 node. 
 | 
<K,V> Topology | 
addSink(java.lang.String name,
       java.lang.String topic,
       Serializer<K> keySerializer,
       Serializer<V> valueSerializer,
       StreamPartitioner<? super K,? super V> partitioner,
       java.lang.String... parentNames)
Add a new sink that forwards records from upstream parent processor and/or source nodes to the named Kafka topic. 
 | 
<K,V> Topology | 
addSink(java.lang.String name,
       java.lang.String topic,
       Serializer<K> keySerializer,
       Serializer<V> valueSerializer,
       java.lang.String... parentNames)
Add a new sink that forwards records from upstream parent processor and/or source nodes to the named Kafka topic. 
 | 
<K,V> Topology | 
addSink(java.lang.String name,
       java.lang.String topic,
       StreamPartitioner<? super K,? super V> partitioner,
       java.lang.String... parentNames)
Add a new sink that forwards records from upstream parent processor and/or source nodes to the named Kafka topic,
 using the supplied partitioner. 
 | 
Topology | 
addSink(java.lang.String name,
       java.lang.String topic,
       java.lang.String... parentNames)
Add a new sink that forwards records from upstream parent processor and/or source nodes to the named Kafka topic. 
 | 
<K,V> Topology | 
addSink(java.lang.String name,
       TopicNameExtractor<K,V> topicExtractor,
       Serializer<K> keySerializer,
       Serializer<V> valueSerializer,
       StreamPartitioner<? super K,? super V> partitioner,
       java.lang.String... parentNames)
Add a new sink that forwards records from upstream parent processor and/or source nodes to Kafka topics based on  
topicExtractor. | 
<K,V> Topology | 
addSink(java.lang.String name,
       TopicNameExtractor<K,V> topicExtractor,
       Serializer<K> keySerializer,
       Serializer<V> valueSerializer,
       java.lang.String... parentNames)
Add a new sink that forwards records from upstream parent processor and/or source nodes to Kafka topics based on  
topicExtractor. | 
<K,V> Topology | 
addSink(java.lang.String name,
       TopicNameExtractor<K,V> topicExtractor,
       StreamPartitioner<? super K,? super V> partitioner,
       java.lang.String... parentNames)
Add a new sink that forwards records from upstream parent processor and/or source nodes to Kafka topics based on  
topicExtractor,
 using the supplied partitioner. | 
<K,V> Topology | 
addSink(java.lang.String name,
       TopicNameExtractor<K,V> topicExtractor,
       java.lang.String... parentNames)
Add a new sink that forwards records from upstream parent processor and/or source nodes to Kafka topics based on  
topicExtractor. | 
Topology | 
addSource(java.lang.String name,
         Deserializer keyDeserializer,
         Deserializer valueDeserializer,
         java.util.regex.Pattern topicPattern)
Add a new source that consumes from topics matching the given pattern and forwards the records to child processor
 and/or sink nodes. 
 | 
Topology | 
addSource(java.lang.String name,
         Deserializer keyDeserializer,
         Deserializer valueDeserializer,
         java.lang.String... topics)
Add a new source that consumes the named topics and forwards the records to child processor and/or sink nodes. 
 | 
Topology | 
addSource(java.lang.String name,
         java.util.regex.Pattern topicPattern)
Add a new source that consumes from topics matching the given pattern
 and forward the records to child processor and/or sink nodes. 
 | 
Topology | 
addSource(java.lang.String name,
         java.lang.String... topics)
Add a new source that consumes the named topics and forward the records to child processor and/or sink nodes. 
 | 
Topology | 
addSource(TimestampExtractor timestampExtractor,
         java.lang.String name,
         java.util.regex.Pattern topicPattern)
Add a new source that consumes from topics matching the given pattern
 and forward the records to child processor and/or sink nodes. 
 | 
Topology | 
addSource(TimestampExtractor timestampExtractor,
         java.lang.String name,
         java.lang.String... topics)
Add a new source that consumes the named topics and forward the records to child processor and/or sink nodes. 
 | 
Topology | 
addSource(Topology.AutoOffsetReset offsetReset,
         java.lang.String name,
         Deserializer keyDeserializer,
         Deserializer valueDeserializer,
         java.util.regex.Pattern topicPattern)
Add a new source that consumes from topics matching the given pattern and forwards the records to child processor
 and/or sink nodes. 
 | 
Topology | 
addSource(Topology.AutoOffsetReset offsetReset,
         java.lang.String name,
         Deserializer keyDeserializer,
         Deserializer valueDeserializer,
         java.lang.String... topics)
Add a new source that consumes from topics matching the given pattern and forwards the records to child processor
 and/or sink nodes. 
 | 
Topology | 
addSource(Topology.AutoOffsetReset offsetReset,
         java.lang.String name,
         java.util.regex.Pattern topicPattern)
Add a new source that consumes from topics matching the given pattern
 and forward the records to child processor and/or sink nodes. 
 | 
Topology | 
addSource(Topology.AutoOffsetReset offsetReset,
         java.lang.String name,
         java.lang.String... topics)
Add a new source that consumes the named topics and forward the records to child processor and/or sink nodes. 
 | 
Topology | 
addSource(Topology.AutoOffsetReset offsetReset,
         java.lang.String name,
         TimestampExtractor timestampExtractor,
         Deserializer keyDeserializer,
         Deserializer valueDeserializer,
         java.util.regex.Pattern topicPattern)
Add a new source that consumes from topics matching the given pattern and forwards the records to child processor
 and/or sink nodes. 
 | 
Topology | 
addSource(Topology.AutoOffsetReset offsetReset,
         java.lang.String name,
         TimestampExtractor timestampExtractor,
         Deserializer keyDeserializer,
         Deserializer valueDeserializer,
         java.lang.String... topics)
Add a new source that consumes the named topics and forwards the records to child processor and/or sink nodes. 
 | 
Topology | 
addSource(Topology.AutoOffsetReset offsetReset,
         TimestampExtractor timestampExtractor,
         java.lang.String name,
         java.util.regex.Pattern topicPattern)
Add a new source that consumes from topics matching the given pattern and forward the records to child processor
 and/or sink nodes. 
 | 
Topology | 
addSource(Topology.AutoOffsetReset offsetReset,
         TimestampExtractor timestampExtractor,
         java.lang.String name,
         java.lang.String... topics)
Add a new source that consumes the named topics and forward the records to child processor and/or sink nodes. 
 | 
Topology | 
addStateStore(StoreBuilder storeBuilder,
             java.lang.String... processorNames)
Adds a state store. 
 | 
Topology | 
connectProcessorAndStateStores(java.lang.String processorName,
                              java.lang.String... stateStoreNames)
Connects the processor and the state stores. 
 | 
TopologyDescription | 
describe()
Returns a description of the specified  
Topology. | 
public Topology addSource(java.lang.String name, java.lang.String... topics)
default key deserializer and
 default value deserializer specified in the
 stream configuration.
 The default TimestampExtractor as specified in the config is used.name - the unique name of the source used to reference this node when
 adding processor children.topics - the name of one or more Kafka topics that this source is to consumeTopologyException - if processor is already added or if topics have already been registered by another sourcepublic Topology addSource(java.lang.String name, java.util.regex.Pattern topicPattern)
default key deserializer and
 default value deserializer specified in the
 stream configuration.
 The default TimestampExtractor as specified in the config is used.name - the unique name of the source used to reference this node when
 adding processor children.topicPattern - regular expression pattern to match Kafka topics that this source is to consumeTopologyException - if processor is already added or if topics have already been registered by another sourcepublic Topology addSource(Topology.AutoOffsetReset offsetReset, java.lang.String name, java.lang.String... topics)
default key deserializer and
 default value deserializer specified in the
 stream configuration.
 The default TimestampExtractor as specified in the config is used.offsetReset - the auto offset reset policy to use for this source if no committed offsets found; acceptable values earliest or latestname - the unique name of the source used to reference this node when
 adding processor children.topics - the name of one or more Kafka topics that this source is to consumeTopologyException - if processor is already added or if topics have already been registered by another sourcepublic Topology addSource(Topology.AutoOffsetReset offsetReset, java.lang.String name, java.util.regex.Pattern topicPattern)
default key deserializer and
 default value deserializer specified in the
 stream configuration.
 The default TimestampExtractor as specified in the config is used.offsetReset - the auto offset reset policy value for this source if no committed offsets found; acceptable values earliest or latest.name - the unique name of the source used to reference this node when
 adding processor children.topicPattern - regular expression pattern to match Kafka topics that this source is to consumeTopologyException - if processor is already added or if topics have already been registered by another sourcepublic Topology addSource(TimestampExtractor timestampExtractor, java.lang.String name, java.lang.String... topics)
default key deserializer and
 default value deserializer specified in the
 stream configuration.timestampExtractor - the stateless timestamp extractor used for this source,
                           if not specified the default extractor defined in the configs will be usedname - the unique name of the source used to reference this node when
                           adding processor children.topics - the name of one or more Kafka topics that this source is to consumeTopologyException - if processor is already added or if topics have already been registered by another sourcepublic Topology addSource(TimestampExtractor timestampExtractor, java.lang.String name, java.util.regex.Pattern topicPattern)
default key deserializer and
 default value deserializer specified in the
 stream configuration.timestampExtractor - the stateless timestamp extractor used for this source,
                           if not specified the default extractor defined in the configs will be usedname - the unique name of the source used to reference this node when
                           adding processor children.topicPattern - regular expression pattern to match Kafka topics that this source is to consumeTopologyException - if processor is already added or if topics have already been registered by another sourcepublic Topology addSource(Topology.AutoOffsetReset offsetReset, TimestampExtractor timestampExtractor, java.lang.String name, java.lang.String... topics)
default key deserializer and
 default value deserializer specified in the
 stream configuration.offsetReset - the auto offset reset policy to use for this source if no committed offsets found;
                           acceptable values earliest or latesttimestampExtractor - the stateless timestamp extractor used for this source,
                           if not specified the default extractor defined in the configs will be usedname - the unique name of the source used to reference this node when
                           adding processor children.topics - the name of one or more Kafka topics that this source is to consumeTopologyException - if processor is already added or if topics have already been registered by another sourcepublic Topology addSource(Topology.AutoOffsetReset offsetReset, TimestampExtractor timestampExtractor, java.lang.String name, java.util.regex.Pattern topicPattern)
default key deserializer and
 default value deserializer specified in the
 stream configuration.offsetReset - the auto offset reset policy value for this source if no committed offsets found;
                           acceptable values earliest or latest.timestampExtractor - the stateless timestamp extractor used for this source,
                           if not specified the default extractor defined in the configs will be usedname - the unique name of the source used to reference this node when
                           adding processor children.topicPattern - regular expression pattern to match Kafka topics that this source is to consumeTopologyException - if processor is already added or if topics have already been registered by another sourcepublic Topology addSource(java.lang.String name, Deserializer keyDeserializer, Deserializer valueDeserializer, java.lang.String... topics)
TimestampExtractor as specified in the config is used.name - the unique name of the source used to reference this node when
                           adding processor childrenkeyDeserializer - key deserializer used to read this source, if not specified the default
                           key deserializer defined in the configs will be usedvalueDeserializer - value deserializer used to read this source,
                           if not specified the default value deserializer defined in the configs will be usedtopics - the name of one or more Kafka topics that this source is to consumeTopologyException - if processor is already added or if topics have already been registered by another sourcepublic Topology addSource(java.lang.String name, Deserializer keyDeserializer, Deserializer valueDeserializer, java.util.regex.Pattern topicPattern)
TimestampExtractor as specified in the config is used.name - the unique name of the source used to reference this node when
                           adding processor childrenkeyDeserializer - key deserializer used to read this source, if not specified the default
                           key deserializer defined in the configs will be usedvalueDeserializer - value deserializer used to read this source,
                           if not specified the default value deserializer defined in the configs will be usedtopicPattern - regular expression pattern to match Kafka topics that this source is to consumeTopologyException - if processor is already added or if topics have already been registered by namepublic Topology addSource(Topology.AutoOffsetReset offsetReset, java.lang.String name, Deserializer keyDeserializer, Deserializer valueDeserializer, java.lang.String... topics)
offsetReset - the auto offset reset policy to use for this stream if no committed offsets found;
                           acceptable values are earliest or latestname - the unique name of the source used to reference this node when
                           adding processor childrenkeyDeserializer - key deserializer used to read this source, if not specified the default
                           key deserializer defined in the configs will be usedvalueDeserializer - value deserializer used to read this source,
                           if not specified the default value deserializer defined in the configs will be usedtopics - the name of one or more Kafka topics that this source is to consumeTopologyException - if processor is already added or if topics have already been registered by namepublic Topology addSource(Topology.AutoOffsetReset offsetReset, java.lang.String name, Deserializer keyDeserializer, Deserializer valueDeserializer, java.util.regex.Pattern topicPattern)
offsetReset - the auto offset reset policy to use for this stream if no committed offsets found;
                           acceptable values are earliest or latestname - the unique name of the source used to reference this node when
                           adding processor childrenkeyDeserializer - key deserializer used to read this source, if not specified the default
                           key deserializer defined in the configs will be usedvalueDeserializer - value deserializer used to read this source,
                           if not specified the default value deserializer defined in the configs will be usedtopicPattern - regular expression pattern to match Kafka topics that this source is to consumeTopologyException - if processor is already added or if topics have already been registered by namepublic Topology addSource(Topology.AutoOffsetReset offsetReset, java.lang.String name, TimestampExtractor timestampExtractor, Deserializer keyDeserializer, Deserializer valueDeserializer, java.lang.String... topics)
offsetReset - the auto offset reset policy to use for this stream if no committed offsets found;
                           acceptable values are earliest or latest.name - the unique name of the source used to reference this node when
                           adding processor children.timestampExtractor - the stateless timestamp extractor used for this source,
                           if not specified the default extractor defined in the configs will be usedkeyDeserializer - key deserializer used to read this source, if not specified the default
                           key deserializer defined in the configs will be usedvalueDeserializer - value deserializer used to read this source,
                           if not specified the default value deserializer defined in the configs will be usedtopics - the name of one or more Kafka topics that this source is to consumeTopologyException - if processor is already added or if topics have already been registered by another sourcepublic Topology addSource(Topology.AutoOffsetReset offsetReset, java.lang.String name, TimestampExtractor timestampExtractor, Deserializer keyDeserializer, Deserializer valueDeserializer, java.util.regex.Pattern topicPattern)
offsetReset - the auto offset reset policy to use for this stream if no committed offsets found;
                           acceptable values are earliest or latestname - the unique name of the source used to reference this node when
                           adding processor children.timestampExtractor - the stateless timestamp extractor used for this source,
                           if not specified the default extractor defined in the configs will be usedkeyDeserializer - key deserializer used to read this source, if not specified the default
                           key deserializer defined in the configs will be usedvalueDeserializer - value deserializer used to read this source,
                           if not specified the default value deserializer defined in the configs will be usedtopicPattern - regular expression pattern to match Kafka topics that this source is to consumeTopologyException - if processor is already added or if topics have already been registered by namepublic Topology addSink(java.lang.String name, java.lang.String topic, java.lang.String... parentNames)
default key serializer and
 default value serializer specified in the
 stream configuration.name - the unique name of the sinktopic - the name of the Kafka topic to which this sink should write its recordsparentNames - the name of one or more source or processor nodes whose output records this sink should consume
 and write to its topicTopologyException - if parent processor is not added yet, or if this processor's name is equal to the parent's nameaddSink(String, String, StreamPartitioner, String...), 
addSink(String, String, Serializer, Serializer, String...), 
addSink(String, String, Serializer, Serializer, StreamPartitioner, String...)public <K,V> Topology addSink(java.lang.String name, java.lang.String topic, StreamPartitioner<? super K,? super V> partitioner, java.lang.String... parentNames)
default key serializer and
 default value serializer specified in the
 stream configuration.
 
 The sink will also use the specified StreamPartitioner to determine how records are distributed among
 the named Kafka topic's partitions.
 Such control is often useful with topologies that use state
 stores in its processors.
 In most other cases, however, a partitioner needs not be specified and Kafka will automatically distribute
 records among partitions using Kafka's default partitioning logic.
name - the unique name of the sinktopic - the name of the Kafka topic to which this sink should write its recordspartitioner - the function that should be used to determine the partition for each record processed by the sinkparentNames - the name of one or more source or processor nodes whose output records this sink should consume
 and write to its topicTopologyException - if parent processor is not added yet, or if this processor's name is equal to the parent's nameaddSink(String, String, String...), 
addSink(String, String, Serializer, Serializer, String...), 
addSink(String, String, Serializer, Serializer, StreamPartitioner, String...)public <K,V> Topology addSink(java.lang.String name, java.lang.String topic, Serializer<K> keySerializer, Serializer<V> valueSerializer, java.lang.String... parentNames)
name - the unique name of the sinktopic - the name of the Kafka topic to which this sink should write its recordskeySerializer - the key serializer used when consuming records; may be null if the sink
 should use the default key serializer specified in the
 stream configurationvalueSerializer - the value serializer used when consuming records; may be null if the sink
 should use the default value serializer specified in the
 stream configurationparentNames - the name of one or more source or processor nodes whose output records this sink should consume
 and write to its topicTopologyException - if parent processor is not added yet, or if this processor's name is equal to the parent's nameaddSink(String, String, String...), 
addSink(String, String, StreamPartitioner, String...), 
addSink(String, String, Serializer, Serializer, StreamPartitioner, String...)public <K,V> Topology addSink(java.lang.String name, java.lang.String topic, Serializer<K> keySerializer, Serializer<V> valueSerializer, StreamPartitioner<? super K,? super V> partitioner, java.lang.String... parentNames)
name - the unique name of the sinktopic - the name of the Kafka topic to which this sink should write its recordskeySerializer - the key serializer used when consuming records; may be null if the sink
 should use the default key serializer specified in the
 stream configurationvalueSerializer - the value serializer used when consuming records; may be null if the sink
 should use the default value serializer specified in the
 stream configurationpartitioner - the function that should be used to determine the partition for each record processed by the sinkparentNames - the name of one or more source or processor nodes whose output records this sink should consume
 and write to its topicTopologyException - if parent processor is not added yet, or if this processor's name is equal to the parent's nameaddSink(String, String, String...), 
addSink(String, String, StreamPartitioner, String...), 
addSink(String, String, Serializer, Serializer, String...)public <K,V> Topology addSink(java.lang.String name, TopicNameExtractor<K,V> topicExtractor, java.lang.String... parentNames)
topicExtractor.
 The topics that it may ever send to should be pre-created.
 The sink will use the default key serializer and
 default value serializer specified in the
 stream configuration.name - the unique name of the sinktopicExtractor - the extractor to determine the name of the Kafka topic to which this sink should write for each recordparentNames - the name of one or more source or processor nodes whose output records this sink should consume
                          and dynamically write to topicsTopologyException - if parent processor is not added yet, or if this processor's name is equal to the parent's nameaddSink(String, String, StreamPartitioner, String...), 
addSink(String, String, Serializer, Serializer, String...), 
addSink(String, String, Serializer, Serializer, StreamPartitioner, String...)public <K,V> Topology addSink(java.lang.String name, TopicNameExtractor<K,V> topicExtractor, StreamPartitioner<? super K,? super V> partitioner, java.lang.String... parentNames)
topicExtractor,
 using the supplied partitioner.
 The topics that it may ever send to should be pre-created.
 The sink will use the default key serializer and
 default value serializer specified in the
 stream configuration.
 
 The sink will also use the specified StreamPartitioner to determine how records are distributed among
 the named Kafka topic's partitions.
 Such control is often useful with topologies that use state
 stores in its processors.
 In most other cases, however, a partitioner needs not be specified and Kafka will automatically distribute
 records among partitions using Kafka's default partitioning logic.
name - the unique name of the sinktopicExtractor - the extractor to determine the name of the Kafka topic to which this sink should write for each recordpartitioner - the function that should be used to determine the partition for each record processed by the sinkparentNames - the name of one or more source or processor nodes whose output records this sink should consume
                          and dynamically write to topicsTopologyException - if parent processor is not added yet, or if this processor's name is equal to the parent's nameaddSink(String, String, String...), 
addSink(String, String, Serializer, Serializer, String...), 
addSink(String, String, Serializer, Serializer, StreamPartitioner, String...)public <K,V> Topology addSink(java.lang.String name, TopicNameExtractor<K,V> topicExtractor, Serializer<K> keySerializer, Serializer<V> valueSerializer, java.lang.String... parentNames)
topicExtractor.
 The topics that it may ever send to should be pre-created.
 The sink will use the specified key and value serializers.name - the unique name of the sinktopicExtractor - the extractor to determine the name of the Kafka topic to which this sink should write for each recordkeySerializer - the key serializer used when consuming records; may be null if the sink
                          should use the default key serializer specified in the
                          stream configurationvalueSerializer - the value serializer used when consuming records; may be null if the sink
                          should use the default value serializer specified in the
                          stream configurationparentNames - the name of one or more source or processor nodes whose output records this sink should consume
                          and dynamically write to topicsTopologyException - if parent processor is not added yet, or if this processor's name is equal to the parent's nameaddSink(String, String, String...), 
addSink(String, String, StreamPartitioner, String...), 
addSink(String, String, Serializer, Serializer, StreamPartitioner, String...)public <K,V> Topology addSink(java.lang.String name, TopicNameExtractor<K,V> topicExtractor, Serializer<K> keySerializer, Serializer<V> valueSerializer, StreamPartitioner<? super K,? super V> partitioner, java.lang.String... parentNames)
topicExtractor.
 The topics that it may ever send to should be pre-created.
 The sink will use the specified key and value serializers, and the supplied partitioner.name - the unique name of the sinktopicExtractor - the extractor to determine the name of the Kafka topic to which this sink should write for each recordkeySerializer - the key serializer used when consuming records; may be null if the sink
                          should use the default key serializer specified in the
                          stream configurationvalueSerializer - the value serializer used when consuming records; may be null if the sink
                          should use the default value serializer specified in the
                          stream configurationpartitioner - the function that should be used to determine the partition for each record processed by the sinkparentNames - the name of one or more source or processor nodes whose output records this sink should consume
                          and dynamically write to topicsTopologyException - if parent processor is not added yet, or if this processor's name is equal to the parent's nameaddSink(String, String, String...), 
addSink(String, String, StreamPartitioner, String...), 
addSink(String, String, Serializer, Serializer, String...)public Topology addProcessor(java.lang.String name, ProcessorSupplier supplier, java.lang.String... parentNames)
name - the unique name of the processor nodesupplier - the supplier used to obtain this node's Processor instanceparentNames - the name of one or more source or processor nodes whose output records this processor should receive
 and processTopologyException - if parent processor is not added yet, or if this processor's name is equal to the parent's namepublic Topology addStateStore(StoreBuilder storeBuilder, java.lang.String... processorNames)
storeBuilder - the storeBuilder used to obtain this state store StateStore instanceprocessorNames - the names of the processors that should be able to access the provided storeTopologyException - if state store supplier is already addedpublic Topology addGlobalStore(StoreBuilder storeBuilder, java.lang.String sourceName, Deserializer keyDeserializer, Deserializer valueDeserializer, java.lang.String topic, java.lang.String processorName, ProcessorSupplier stateUpdateSupplier)
StateStore to the topology.
 The StateStore sources its data from all partitions of the provided input topic.
 There will be exactly one instance of this StateStore per Kafka Streams instance.
 
 A SourceNode with the provided sourceName will be added to consume the data arriving from the partitions
 of the input topic.
 
 The provided ProcessorSupplier will be used to create an ProcessorNode that will receive all
 records forwarded from the SourceNode.
 This ProcessorNode should be used to keep the StateStore up-to-date.
 The default TimestampExtractor as specified in the config is used.
storeBuilder - user defined state store buildersourceName - name of the SourceNode that will be automatically addedkeyDeserializer - the Deserializer to deserialize keys withvalueDeserializer - the Deserializer to deserialize values withtopic - the topic to source the data fromprocessorName - the name of the ProcessorSupplierstateUpdateSupplier - the instance of ProcessorSupplierTopologyException - if the processor of state is already registeredpublic Topology addGlobalStore(StoreBuilder storeBuilder, java.lang.String sourceName, TimestampExtractor timestampExtractor, Deserializer keyDeserializer, Deserializer valueDeserializer, java.lang.String topic, java.lang.String processorName, ProcessorSupplier stateUpdateSupplier)
StateStore to the topology.
 The StateStore sources its data from all partitions of the provided input topic.
 There will be exactly one instance of this StateStore per Kafka Streams instance.
 
 A SourceNode with the provided sourceName will be added to consume the data arriving from the partitions
 of the input topic.
 
 The provided ProcessorSupplier will be used to create an ProcessorNode that will receive all
 records forwarded from the SourceNode.
 This ProcessorNode should be used to keep the StateStore up-to-date.
storeBuilder - user defined key value store buildersourceName - name of the SourceNode that will be automatically addedtimestampExtractor - the stateless timestamp extractor used for this source,
                              if not specified the default extractor defined in the configs will be usedkeyDeserializer - the Deserializer to deserialize keys withvalueDeserializer - the Deserializer to deserialize values withtopic - the topic to source the data fromprocessorName - the name of the ProcessorSupplierstateUpdateSupplier - the instance of ProcessorSupplierTopologyException - if the processor of state is already registeredpublic Topology connectProcessorAndStateStores(java.lang.String processorName, java.lang.String... stateStoreNames)
processorName - the name of the processorstateStoreNames - the names of state stores that the processor usesTopologyException - if the processor or a state store is unknownpublic TopologyDescription describe()
Topology.