K
- Type of keysV
- Type of valuespublic interface TimeWindowedKStream<K,V>
TimeWindowedKStream
is an abstraction of a windowed record stream of KeyValue
pairs.
It is an intermediate representation after a grouping and windowing of a KStream
before an aggregation is
applied to the new (partitioned) windows resulting in a windowed KTable
(a KTable
is a KTable
with key type Windowed
).
The specified windows
define either hopping time windows that can be overlapping or tumbling (c.f.
TimeWindows
) or they define landmark windows (c.f. UnlimitedWindows
).
The result is written into a local WindowStore
(which is basically an ever-updating
materialized view) that can be queried using the name provided in the Materialized
instance.
Furthermore, updates to the store are sent downstream into a windowed KTable
changelog stream, where
"windowed" implies that the KTable
key is a combined key of the original record key and a window ID.
New events are added to TimeWindows
until their grace period ends (see TimeWindows.grace(Duration)
).
A TimeWindowedKStream
must be obtained from a KGroupedStream
via
KGroupedStream.windowedBy(Windows)
.
KStream
,
KGroupedStream
Modifier and Type | Method and Description |
---|---|
<VR> KTable<Windowed<K>,VR> |
aggregate(Initializer<VR> initializer,
Aggregator<? super K,? super V,VR> aggregator)
Aggregate the values of records in this stream by the grouped key and defined windows.
|
<VR> KTable<Windowed<K>,VR> |
aggregate(Initializer<VR> initializer,
Aggregator<? super K,? super V,VR> aggregator,
Materialized<K,VR,WindowStore<org.apache.kafka.common.utils.Bytes,byte[]>> materialized)
Aggregate the values of records in this stream by the grouped key and defined windows.
|
<VR> KTable<Windowed<K>,VR> |
aggregate(Initializer<VR> initializer,
Aggregator<? super K,? super V,VR> aggregator,
Named named)
Aggregate the values of records in this stream by the grouped key and defined windows.
|
<VR> KTable<Windowed<K>,VR> |
aggregate(Initializer<VR> initializer,
Aggregator<? super K,? super V,VR> aggregator,
Named named,
Materialized<K,VR,WindowStore<org.apache.kafka.common.utils.Bytes,byte[]>> materialized)
Aggregate the values of records in this stream by the grouped key and defined windows.
|
KTable<Windowed<K>,Long> |
count()
Count the number of records in this stream by the grouped key and defined windows.
|
KTable<Windowed<K>,Long> |
count(Materialized<K,Long,WindowStore<org.apache.kafka.common.utils.Bytes,byte[]>> materialized)
Count the number of records in this stream by the grouped key and defined windows.
|
KTable<Windowed<K>,Long> |
count(Named named)
Count the number of records in this stream by the grouped key and defined windows.
|
KTable<Windowed<K>,Long> |
count(Named named,
Materialized<K,Long,WindowStore<org.apache.kafka.common.utils.Bytes,byte[]>> materialized)
Count the number of records in this stream by the grouped key and defined windows.
|
TimeWindowedKStream<K,V> |
emitStrategy(EmitStrategy emitStrategy)
Configure when the aggregated result will be emitted for
TimeWindowedKStream . |
KTable<Windowed<K>,V> |
reduce(Reducer<V> reducer)
Combine the values of records in this stream by the grouped key and defined windows.
|
KTable<Windowed<K>,V> |
reduce(Reducer<V> reducer,
Materialized<K,V,WindowStore<org.apache.kafka.common.utils.Bytes,byte[]>> materialized)
Combine the values of records in this stream by the grouped key and defined windows.
|
KTable<Windowed<K>,V> |
reduce(Reducer<V> reducer,
Named named)
Combine the values of records in this stream by the grouped key and defined windows.
|
KTable<Windowed<K>,V> |
reduce(Reducer<V> reducer,
Named named,
Materialized<K,V,WindowStore<org.apache.kafka.common.utils.Bytes,byte[]>> materialized)
Combine the values of records in this stream by the grouped key and defined windows.
|
KTable<Windowed<K>,Long> count()
null
key or value are ignored.
The result is written into a local WindowStore
(which is basically an ever-updating materialized view).
The default key serde from the config will be used for serializing the result.
If a different serde is required then you should use count(Materialized)
.
Furthermore, updates to the store are sent downstream into a KTable
changelog stream.
Not all updates might get sent downstream, as an internal cache is used to deduplicate consecutive updates to
the same window and key.
The rate of propagated updates depends on your input data rate, the number of distinct keys, the number of
parallel running Kafka Streams instances, and the configuration
parameters for
cache size
, and
commit interval
.
For failure and recovery the store (which always will be of type TimestampedWindowStore
) will be backed by
an internal changelog topic that will be created in Kafka.
The changelog topic will be named "${applicationId}-${internalStoreName}-changelog", where "applicationId" is
user-specified in StreamsConfig
via parameter
APPLICATION_ID_CONFIG
, "internalStoreName" is an internal name
and "-changelog" is a fixed suffix.
Note that the internal store name may not be queryable through Interactive Queries.
You can retrieve all generated internal topic names via Topology.describe()
.
KTable<Windowed<K>,Long> count(Named named)
null
key or value are ignored.
The result is written into a local WindowStore
(which is basically an ever-updating materialized view).
The default key serde from the config will be used for serializing the result.
If a different serde is required then you should use count(Named, Materialized)
.
Furthermore, updates to the store are sent downstream into a KTable
changelog stream.
Not all updates might get sent downstream, as an internal cache is used to deduplicate consecutive updates to
the same window and key.
The rate of propagated updates depends on your input data rate, the number of distinct keys, the number of
parallel running Kafka Streams instances, and the configuration
parameters for
cache size
, and
commit interval
.
For failure and recovery the store (which always will be of type TimestampedWindowStore
) will be backed by
an internal changelog topic that will be created in Kafka.
The changelog topic will be named "${applicationId}-${internalStoreName}-changelog", where "applicationId" is
user-specified in StreamsConfig
via parameter
APPLICATION_ID_CONFIG
, "internalStoreName" is an internal name
and "-changelog" is a fixed suffix.
Note that the internal store name may not be queryable through Interactive Queries.
You can retrieve all generated internal topic names via Topology.describe()
.
KTable<Windowed<K>,Long> count(Materialized<K,Long,WindowStore<org.apache.kafka.common.utils.Bytes,byte[]>> materialized)
null
key or value are ignored.
The result is written into a local WindowStore
(which is basically an ever-updating materialized view)
that can be queried using the name provided with Materialized
.
Furthermore, updates to the store are sent downstream into a KTable
changelog stream.
Not all updates might get sent downstream, as an internal cache will be used to deduplicate consecutive updates
to the same window and key if caching is enabled on the Materialized
instance.
When caching is enabled the rate of propagated updates depends on your input data rate, the number of distinct
keys, the number of parallel running Kafka Streams instances, and the configuration
parameters for cache size
, and
commit interval
.
To query the local ReadOnlyWindowStore
it must be obtained via
KafkaStreams#store(...)
:
KafkaStreams streams = ... // counting words
Store queryableStoreName = ... // the queryableStoreName should be the name of the store as defined by the Materialized instance
StoreQueryParameters<ReadOnlyKeyValueStore<K, ValueAndTimestamp<Long>>> storeQueryParams = StoreQueryParameters.fromNameAndType(queryableStoreName, QueryableStoreTypes.timestampedWindowStore());
ReadOnlyWindowStore<K, ValueAndTimestamp<Long>> localWindowStore = streams.store(storeQueryParams);
K key = "some-word";
long fromTime = ...;
long toTime = ...;
WindowStoreIterator<ValueAndTimestamp<Long>> countForWordsForWindows = localWindowStore.fetch(key, timeFrom, timeTo); // key must be local (application state is shared over all running Kafka Streams instances)
For non-local keys, a custom RPC mechanism must be implemented using KafkaStreams.metadataForAllStreamsClients()
to
query the value of the key on a parallel running instance of your Kafka Streams application.
For failure and recovery the store (which always will be of type TimestampedWindowStore
-- regardless of what
is specified in the parameter materialized
) will be backed by an internal changelog topic that will be created in Kafka.
Therefore, the store name defined by the Materialized instance must be a valid Kafka topic name and cannot
contain characters other than ASCII alphanumerics, '.', '_' and '-'.
The changelog topic will be named "${applicationId}-${storeName}-changelog", where "applicationId" is
user-specified in StreamsConfig
via parameter
APPLICATION_ID_CONFIG
, "storeName" is the provide store name defined
in Materialized
, and "-changelog" is a fixed suffix.
You can retrieve all generated internal topic names via Topology.describe()
.
materialized
- an instance of Materialized
used to materialize a state store. Cannot be null
.
Note: the valueSerde will be automatically set to Serdes#Long()
if there is no valueSerde providedKTable
that contains "update" records with unmodified keys and Long
values
that represent the latest (rolling) count (i.e., number of records) for each key within a windowKTable<Windowed<K>,Long> count(Named named, Materialized<K,Long,WindowStore<org.apache.kafka.common.utils.Bytes,byte[]>> materialized)
null
key or value are ignored.
The result is written into a local WindowStore
(which is basically an ever-updating materialized view)
that can be queried using the name provided with Materialized
.
Furthermore, updates to the store are sent downstream into a KTable
changelog stream.
Not all updates might get sent downstream, as an internal cache will be used to deduplicate consecutive updates
to the same window and key if caching is enabled on the Materialized
instance.
When caching is enabled the rate of propagated updates depends on your input data rate, the number of distinct
keys, the number of parallel running Kafka Streams instances, and the configuration
parameters for cache size
, and
commit interval
To query the local ReadOnlyWindowStore
it must be obtained via
KafkaStreams#store(...)
:
KafkaStreams streams = ... // counting words
Store queryableStoreName = ... // the queryableStoreName should be the name of the store as defined by the Materialized instance
StoreQueryParameters<ReadOnlyKeyValueStore<K, ValueAndTimestamp<Long>>> storeQueryParams = StoreQueryParameters.fromNameAndType(queryableStoreName, QueryableStoreTypes.timestampedWindowStore());
ReadOnlyWindowStore<K, ValueAndTimestamp<Long>> localWindowStore = streams.store(storeQueryParams);
K key = "some-word";
long fromTime = ...;
long toTime = ...;
WindowStoreIterator<ValueAndTimestamp<Long>> countForWordsForWindows = localWindowStore.fetch(key, timeFrom, timeTo); // key must be local (application state is shared over all running Kafka Streams instances)
For non-local keys, a custom RPC mechanism must be implemented using KafkaStreams.metadataForAllStreamsClients()
to
query the value of the key on a parallel running instance of your Kafka Streams application.
For failure and recovery the store (which always will be of type TimestampedWindowStore
-- regardless of what
is specified in the parameter materialized
) will be backed by an internal changelog topic that will be created in Kafka.
Therefore, the store name defined by the Materialized instance must be a valid Kafka topic name and cannot
contain characters other than ASCII alphanumerics, '.', '_' and '-'.
The changelog topic will be named "${applicationId}-${storeName}-changelog", where "applicationId" is
user-specified in StreamsConfig
via parameter
APPLICATION_ID_CONFIG
, "storeName" is the provide store name defined
in Materialized
, and "-changelog" is a fixed suffix.
You can retrieve all generated internal topic names via Topology.describe()
.
named
- a Named
config used to name the processor in the topology. Cannot be null
.materialized
- an instance of Materialized
used to materialize a state store. Cannot be null
.
Note: the valueSerde will be automatically set to Serdes#Long()
if there is no valueSerde providedKTable
that contains "update" records with unmodified keys and Long
values
that represent the latest (rolling) count (i.e., number of records) for each key within a window<VR> KTable<Windowed<K>,VR> aggregate(Initializer<VR> initializer, Aggregator<? super K,? super V,VR> aggregator)
null
key or value are ignored.
Aggregating is a generalization of combining via reduce(...)
as it, for example,
allows the result to have a different type than the input values.
The result is written into a local WindowStore
(which is basically an ever-updating materialized view).
Furthermore, updates to the store are sent downstream into a KTable
changelog stream.
The specified Initializer
is applied directly before the first input record (per key) in each window is
processed to provide an initial intermediate aggregation result that is used to process the first record for
the window (per key).
The specified Aggregator
is applied for each input record and computes a new aggregate using the current
aggregate (or for the very first record using the intermediate aggregation result provided via the
Initializer
) and the record's value.
Thus, aggregate()
can be used to compute aggregate functions like count (c.f. count()
).
The default key and value serde from the config will be used for serializing the result.
If a different serde is required then you should use aggregate(Initializer, Aggregator, Materialized)
.
Not all updates might get sent downstream, as an internal cache is used to deduplicate consecutive updates to
the same window and key.
The rate of propagated updates depends on your input data rate, the number of distinct keys, the number of
parallel running Kafka Streams instances, and the configuration
parameters for
cache size
, and
commit interval
.
For failure and recovery the store (which always will be of type TimestampedWindowStore
) will be backed by
an internal changelog topic that will be created in Kafka.
The changelog topic will be named "${applicationId}-${internalStoreName}-changelog", where "applicationId" is
user-specified in StreamsConfig
via parameter
APPLICATION_ID_CONFIG
, "internalStoreName" is an internal name
and "-changelog" is a fixed suffix.
Note that the internal store name may not be queryable through Interactive Queries.
You can retrieve all generated internal topic names via Topology.describe()
.
VR
- the value type of the resulting KTable
initializer
- an Initializer
that computes an initial intermediate aggregation result. Cannot be null
.aggregator
- an Aggregator
that computes a new aggregate result. Cannot be null
.KTable
that contains "update" records with unmodified keys, and values that represent
the latest (rolling) aggregate for each key within a window<VR> KTable<Windowed<K>,VR> aggregate(Initializer<VR> initializer, Aggregator<? super K,? super V,VR> aggregator, Named named)
null
key or value are ignored.
Aggregating is a generalization of combining via reduce(...)
as it, for example,
allows the result to have a different type than the input values.
The result is written into a local WindowStore
(which is basically an ever-updating materialized view).
Furthermore, updates to the store are sent downstream into a KTable
changelog stream.
The specified Initializer
is applied directly before the first input record (per key) in each window is
processed to provide an initial intermediate aggregation result that is used to process the first record for
the window (per key).
The specified Aggregator
is applied for each input record and computes a new aggregate using the current
aggregate (or for the very first record using the intermediate aggregation result provided via the
Initializer
) and the record's value.
Thus, aggregate()
can be used to compute aggregate functions like count (c.f. count()
).
The default key and value serde from the config will be used for serializing the result.
If a different serde is required then you should use
aggregate(Initializer, Aggregator, Named, Materialized)
.
Not all updates might get sent downstream, as an internal cache is used to deduplicate consecutive updates to
the same window and key.
The rate of propagated updates depends on your input data rate, the number of distinct
keys, the number of parallel running Kafka Streams instances, and the configuration
parameters for cache size
, and
commit interval
.
For failure and recovery the store (which always will be of type TimestampedWindowStore
) will be backed by
an internal changelog topic that will be created in Kafka.
The changelog topic will be named "${applicationId}-${internalStoreName}-changelog", where "applicationId" is
user-specified in StreamsConfig
via parameter
APPLICATION_ID_CONFIG
, "internalStoreName" is an internal name
and "-changelog" is a fixed suffix.
Note that the internal store name may not be queryable through Interactive Queries.
You can retrieve all generated internal topic names via Topology.describe()
.
VR
- the value type of the resulting KTable
initializer
- an Initializer
that computes an initial intermediate aggregation result. Cannot be null
.aggregator
- an Aggregator
that computes a new aggregate result. Cannot be null
.named
- a Named
config used to name the processor in the topology. Cannot be null
.KTable
that contains "update" records with unmodified keys, and values that represent
the latest (rolling) aggregate for each key within a window<VR> KTable<Windowed<K>,VR> aggregate(Initializer<VR> initializer, Aggregator<? super K,? super V,VR> aggregator, Materialized<K,VR,WindowStore<org.apache.kafka.common.utils.Bytes,byte[]>> materialized)
null
key or value are ignored.
Aggregating is a generalization of combining via reduce(...)
as it, for example,
allows the result to have a different type than the input values.
The result is written into a local WindowStore
(which is basically an ever-updating materialized view)
that can be queried using the store name as provided with Materialized
.
Furthermore, updates to the store are sent downstream into a KTable
changelog stream.
The specified Initializer
is applied directly before the first input record (per key) in each window is
processed to provide an initial intermediate aggregation result that is used to process the first record for
the window (per key).
The specified Aggregator
is applied for each input record and computes a new aggregate using the current
aggregate (or for the very first record using the intermediate aggregation result provided via the
Initializer
) and the record's value.
Thus, aggregate()
can be used to compute aggregate functions like count (c.f. count()
).
Not all updates might get sent downstream, as an internal cache is used to deduplicate consecutive updates to
the same window and key if caching is enabled on the Materialized
instance.
When caching is enabled the rate of propagated updates depends on your input data rate, the number of distinct
keys, the number of parallel running Kafka Streams instances, and the configuration
parameters for cache size
, and
commit interval
.
To query the local ReadOnlyWindowStore
it must be obtained via
KafkaStreams#store(...)
:
KafkaStreams streams = ... // counting words
Store queryableStoreName = ... // the queryableStoreName should be the name of the store as defined by the Materialized instance
StoreQueryParameters<ReadOnlyKeyValueStore<K, ValueAndTimestamp<VR>>> storeQueryParams = StoreQueryParameters.fromNameAndType(queryableStoreName, QueryableStoreTypes.timestampedWindowStore());
ReadOnlyWindowStore<K, ValueAndTimestamp<VR>> localWindowStore = streams.store(storeQueryParams);
K key = "some-word";
long fromTime = ...;
long toTime = ...;
WindowStoreIterator<ValueAndTimestamp<VR>> aggregateStore = localWindowStore.fetch(key, timeFrom, timeTo); // key must be local (application state is shared over all running Kafka Streams instances)
For non-local keys, a custom RPC mechanism must be implemented using KafkaStreams.metadataForAllStreamsClients()
to
query the value of the key on a parallel running instance of your Kafka Streams application.
For failure and recovery the store (which always will be of type TimestampedWindowStore
-- regardless of what
is specified in the parameter materialized
) will be backed by an internal changelog topic that will be created in Kafka.
Therefore, the store name defined by the Materialized
instance must be a valid Kafka topic name and
cannot contain characters other than ASCII alphanumerics, '.', '_' and '-'.
The changelog topic will be named "${applicationId}-${storeName}-changelog", where "applicationId" is
user-specified in StreamsConfig
via parameter
APPLICATION_ID_CONFIG
, "storeName" is the
provide store name defined in Materialized
, and "-changelog" is a fixed suffix.
You can retrieve all generated internal topic names via Topology.describe()
.
VR
- the value type of the resulting KTable
initializer
- an Initializer
that computes an initial intermediate aggregation result. Cannot be null
.aggregator
- an Aggregator
that computes a new aggregate result. Cannot be null
.materialized
- a Materialized
config used to materialize a state store. Cannot be null
.KTable
that contains "update" records with unmodified keys, and values that represent
the latest (rolling) aggregate for each key within a window<VR> KTable<Windowed<K>,VR> aggregate(Initializer<VR> initializer, Aggregator<? super K,? super V,VR> aggregator, Named named, Materialized<K,VR,WindowStore<org.apache.kafka.common.utils.Bytes,byte[]>> materialized)
null
key or value are ignored.
Aggregating is a generalization of combining via reduce(...)
as it, for example,
allows the result to have a different type than the input values.
The result is written into a local WindowStore
(which is basically an ever-updating materialized view)
that can be queried using the store name as provided with Materialized
.
Furthermore, updates to the store are sent downstream into a KTable
changelog stream.
The specified Initializer
is applied directly before the first input record (per key) in each window is
processed to provide an initial intermediate aggregation result that is used to process the first record for
the window (per key).
The specified Aggregator
is applied for each input record and computes a new aggregate using the current
aggregate (or for the very first record using the intermediate aggregation result provided via the
Initializer
) and the record's value.
Thus, aggregate()
can be used to compute aggregate functions like count (c.f. count()
).
Not all updates might get sent downstream, as an internal cache will be used to deduplicate consecutive updates
to the same window and key if caching is enabled on the Materialized
instance.
When caching is enabled the rate of propagated updates depends on your input data rate, the number of distinct
keys, the number of parallel running Kafka Streams instances, and the configuration
parameters for cache size
, and
commit interval
To query the local ReadOnlyWindowStore
it must be obtained via
KafkaStreams#store(...)
:
KafkaStreams streams = ... // counting words
Store queryableStoreName = ... // the queryableStoreName should be the name of the store as defined by the Materialized instance
StoreQueryParameters<ReadOnlyKeyValueStore<K, ValueAndTimestamp<VR>>> storeQueryParams = StoreQueryParameters.fromNameAndType(queryableStoreName, QueryableStoreTypes.timestampedWindowStore());
ReadOnlyWindowStore<K, ValueAndTimestamp<VR>> localWindowStore = streams.store(storeQueryParams);
K key = "some-word";
long fromTime = ...;
long toTime = ...;
WindowStoreIterator<ValueAndTimestamp<VR>> aggregateStore = localWindowStore.fetch(key, timeFrom, timeTo); // key must be local (application state is shared over all running Kafka Streams instances)
For non-local keys, a custom RPC mechanism must be implemented using KafkaStreams.metadataForAllStreamsClients()
to
query the value of the key on a parallel running instance of your Kafka Streams application.
For failure and recovery the store (which always will be of type TimestampedWindowStore
-- regardless of what
is specified in the parameter materialized
) will be backed by an internal changelog topic that will be created in Kafka.
Therefore, the store name defined by the Materialized
instance must be a valid Kafka topic name and
cannot contain characters other than ASCII alphanumerics, '.', '_' and '-'.
The changelog topic will be named "${applicationId}-${storeName}-changelog", where "applicationId" is
user-specified in StreamsConfig
via parameter
APPLICATION_ID_CONFIG
, "storeName" is the
provide store name defined in Materialized
, and "-changelog" is a fixed suffix.
You can retrieve all generated internal topic names via Topology.describe()
.
VR
- the value type of the resulting KTable
initializer
- an Initializer
that computes an initial intermediate aggregation result. Cannot be null
.aggregator
- an Aggregator
that computes a new aggregate result. Cannot be null
.named
- a Named
config used to name the processor in the topology. Cannot be null
.materialized
- a Materialized
config used to materialize a state store. Cannot be null
.KTable
that contains "update" records with unmodified keys, and values that represent
the latest (rolling) aggregate for each key within a windowKTable<Windowed<K>,V> reduce(Reducer<V> reducer)
null
key or value are ignored.
Combining implies that the type of the aggregate result is the same as the type of the input value
(c.f. aggregate(Initializer, Aggregator)
).
The result is written into a local WindowStore
(which is basically an ever-updating materialized view).
Furthermore, updates to the store are sent downstream into a KTable
changelog stream.
The default key and value serde from the config will be used for serializing the result.
If a different serde is required then you should use reduce(Reducer, Materialized)
.
The value of the first record per window initialized the aggregation result.
The specified Reducer
is applied for each additional input record per window and computes a new
aggregate using the current aggregate (first argument) and the record's value (second argument):
// At the example of a Reducer<Long>
new Reducer<Long>() {
public Long apply(Long aggValue, Long currValue) {
return aggValue + currValue;
}
}
Thus, reduce()
can be used to compute aggregate functions like sum, min, or max.
Not all updates might get sent downstream, as an internal cache is used to deduplicate consecutive updates to
the same window and key.
The rate of propagated updates depends on your input data rate, the number of distinct keys, the number of
parallel running Kafka Streams instances, and the configuration
parameters for
cache size
, and
commit interval
.
For failure and recovery the store (which always will be of type TimestampedWindowStore
) will be backed by
an internal changelog topic that will be created in Kafka.
The changelog topic will be named "${applicationId}-${internalStoreName}-changelog", where "applicationId" is
user-specified in StreamsConfig
via parameter
APPLICATION_ID_CONFIG
, "internalStoreName" is an internal name
and "-changelog" is a fixed suffix.
You can retrieve all generated internal topic names via Topology.describe()
.
KTable<Windowed<K>,V> reduce(Reducer<V> reducer, Named named)
null
key or value are ignored.
Combining implies that the type of the aggregate result is the same as the type of the input value.
The result is written into a local WindowStore
(which is basically an ever-updating materialized view).
Furthermore, updates to the store are sent downstream into a KTable
changelog stream.
The default key and value serde from the config will be used for serializing the result.
If a different serde is required then you should use reduce(Reducer, Named, Materialized)
.
The value of the first record per window initialized the aggregation result.
The specified Reducer
is applied for each additional input record per window and computes a new
aggregate using the current aggregate (first argument) and the record's value (second argument):
// At the example of a Reducer<Long>
new Reducer<Long>() {
public Long apply(Long aggValue, Long currValue) {
return aggValue + currValue;
}
}
Thus, reduce()
can be used to compute aggregate functions like sum, min, or max.
Not all updates might get sent downstream, as an internal cache is used to deduplicate consecutive updates to
the same window and key.
The rate of propagated updates depends on your input data rate, the number of distinct keys, the number of
parallel running Kafka Streams instances, and the configuration
parameters for
cache size
, and
commit interval
.
For failure and recovery the store (which always will be of type TimestampedWindowStore
) will be backed by
an internal changelog topic that will be created in Kafka.
The changelog topic will be named "${applicationId}-${internalStoreName}-changelog", where "applicationId" is
user-specified in StreamsConfig
via parameter
APPLICATION_ID_CONFIG
, "internalStoreName" is an internal name
and "-changelog" is a fixed suffix.
You can retrieve all generated internal topic names via Topology.describe()
.
reducer
- a Reducer
that computes a new aggregate result. Cannot be null
.named
- a Named
config used to name the processor in the topology. Cannot be null
.KTable
that contains "update" records with unmodified keys, and values that represent
the latest (rolling) aggregate for each key within a windowKTable<Windowed<K>,V> reduce(Reducer<V> reducer, Materialized<K,V,WindowStore<org.apache.kafka.common.utils.Bytes,byte[]>> materialized)
null
key or value are ignored.
Combining implies that the type of the aggregate result is the same as the type of the input value.
The result is written into a local WindowStore
(which is basically an ever-updating materialized view)
that can be queried using the store name as provided with Materialized
.
Furthermore, updates to the store are sent downstream into a KTable
changelog stream.
The value of the first record per window initialized the aggregation result.
The specified Reducer
is applied for each additional input record per window and computes a new
aggregate using the current aggregate (first argument) and the record's value (second argument):
// At the example of a Reducer<Long>
new Reducer<Long>() {
public Long apply(Long aggValue, Long currValue) {
return aggValue + currValue;
}
}
Thus, reduce()
can be used to compute aggregate functions like sum, min, or max.
Not all updates might get sent downstream, as an internal cache will be used to deduplicate consecutive updates
to the same window and key if caching is enabled on the Materialized
instance.
When caching is enabled the rate of propagated updates depends on your input data rate, the number of distinct
keys, the number of parallel running Kafka Streams instances, and the configuration
parameters for cache size
, and
commit interval
.
To query the local ReadOnlyWindowStore
it must be obtained via
KafkaStreams#store(...)
:
KafkaStreams streams = ... // counting words
Store queryableStoreName = ... // the queryableStoreName should be the name of the store as defined by the Materialized instance
StoreQueryParameters<ReadOnlyKeyValueStore<K, ValueAndTimestamp<V>>> storeQueryParams = StoreQueryParameters.fromNameAndType(queryableStoreName, QueryableStoreTypes.timestampedWindowStore());
ReadOnlyWindowStore<K, ValueAndTimestamp<V>> localWindowStore = streams.store(storeQueryParams);
K key = "some-word";
long fromTime = ...;
long toTime = ...;
WindowStoreIterator<ValueAndTimestamp<V>> reduceStore = localWindowStore.fetch(key, timeFrom, timeTo); // key must be local (application state is shared over all running Kafka Streams instances)
For non-local keys, a custom RPC mechanism must be implemented using KafkaStreams.metadataForAllStreamsClients()
to
query the value of the key on a parallel running instance of your Kafka Streams application.
For failure and recovery the store (which always will be of type TimestampedWindowStore
-- regardless of what
is specified in the parameter materialized
) will be backed by an internal changelog topic that will be created in Kafka.
Therefore, the store name defined by the Materialized instance must be a valid Kafka topic name and cannot
contain characters other than ASCII alphanumerics, '.', '_' and '-'.
The changelog topic will be named "${applicationId}-${storeName}-changelog", where "applicationId" is
user-specified in StreamsConfig
via parameter
APPLICATION_ID_CONFIG
, "storeName" is the provide store name defined
in Materialized
, and "-changelog" is a fixed suffix.
You can retrieve all generated internal topic names via Topology.describe()
.
reducer
- a Reducer
that computes a new aggregate result. Cannot be null
.materialized
- a Materialized
config used to materialize a state store. Cannot be null
.KTable
that contains "update" records with unmodified keys, and values that represent
the latest (rolling) aggregate for each key within a windowKTable<Windowed<K>,V> reduce(Reducer<V> reducer, Named named, Materialized<K,V,WindowStore<org.apache.kafka.common.utils.Bytes,byte[]>> materialized)
null
key or value are ignored.
Combining implies that the type of the aggregate result is the same as the type of the input value.
The result is written into a local WindowStore
(which is basically an ever-updating materialized view)
that can be queried using the store name as provided with Materialized
.
Furthermore, updates to the store are sent downstream into a KTable
changelog stream.
The value of the first record per window initialized the aggregation result.
The specified Reducer
is applied for each additional input record per window and computes a new
aggregate using the current aggregate (first argument) and the record's value (second argument):
// At the example of a Reducer<Long>
new Reducer<Long>() {
public Long apply(Long aggValue, Long currValue) {
return aggValue + currValue;
}
}
Thus, reduce()
can be used to compute aggregate functions like sum, min, or max.
Not all updates might get sent downstream, as an internal cache will be used to deduplicate consecutive updates
to the same window and key if caching is enabled on the Materialized
instance.
When caching is enabled the rate of propagated updates depends on your input data rate, the number of distinct
keys, the number of parallel running Kafka Streams instances, and the configuration
parameters for cache size
, and
commit interval
.
To query the local ReadOnlyWindowStore
it must be obtained via
KafkaStreams#store(...)
:
KafkaStreams streams = ... // counting words
Store queryableStoreName = ... // the queryableStoreName should be the name of the store as defined by the Materialized instance
StoreQueryParameters<ReadOnlyKeyValueStore<K, ValueAndTimestamp<V>>> storeQueryParams = StoreQueryParameters.fromNameAndType(queryableStoreName, QueryableStoreTypes.timestampedWindowStore());
ReadOnlyWindowStore<K, ValueAndTimestamp<V>> localWindowStore = streams.store(storeQueryParams);
K key = "some-word";
long fromTime = ...;
long toTime = ...;
WindowStoreIterator<ValueAndTimestamp<V>> reduceStore = localWindowStore.fetch(key, timeFrom, timeTo); // key must be local (application state is shared over all running Kafka Streams instances)
For non-local keys, a custom RPC mechanism must be implemented using KafkaStreams.metadataForAllStreamsClients()
to
query the value of the key on a parallel running instance of your Kafka Streams application.
For failure and recovery the store (which always will be of type TimestampedWindowStore
-- regardless of what
is specified in the parameter materialized
) will be backed by an internal changelog topic that will be created in Kafka.
Therefore, the store name defined by the Materialized instance must be a valid Kafka topic name and cannot
contain characters other than ASCII alphanumerics, '.', '_' and '-'.
The changelog topic will be named "${applicationId}-${storeName}-changelog", where "applicationId" is
user-specified in StreamsConfig
via parameter
APPLICATION_ID_CONFIG
, "storeName" is the provide store name defined
in Materialized
, and "-changelog" is a fixed suffix.
You can retrieve all generated internal topic names via Topology.describe()
.
reducer
- a Reducer
that computes a new aggregate result. Cannot be null
.named
- a Named
config used to name the processor in the topology. Cannot be null
.materialized
- a Materialized
config used to materialize a state store. Cannot be null
.KTable
that contains "update" records with unmodified keys, and values that represent
the latest (rolling) aggregate for each key within a windowTimeWindowedKStream<K,V> emitStrategy(EmitStrategy emitStrategy)
TimeWindowedKStream
.
For example, for EmitStrategy.onWindowClose()
strategy, the aggregated result for a
window will only be emitted when the window closes. For EmitStrategy.onWindowUpdate()
strategy, the aggregated result for a window will be emitted whenever there is an update to
the window. Note that whether the result will be available in downstream also depends on
cache policy.
emitStrategy
- EmitStrategy
to configure when the aggregated result for a window will be emitted.TimeWindowedKStream
with EmitStrategy
configured.